2013年12月30日 星期一

The Reliable Software Developers’ Conference – UK, May 2014

Technology event organiser Energi Technical has announced that it will be launching "The Reliable Software Developers' Conference", scheduled for May 2014.
This one-day conference will provide an important forum for engineers and developers working in the development of safety critical systems and high availability systems. It is expected to attract software developers working in such industries as automotive, railway systems, aerospace, bankingmedical and energy. www.rsd-conference.co.uk
"In recent years, software has become so complex that ensuring safety and reliability is now a major challenge," said Richard Blackburn, Event Organiser. "Many systems now have millions of lines of code and will handle enormous amounts of data. Further to this, modern computer based systems will make millions of decisions every second and also have to be immune to interference and unpredictable events. This event will look at the MISRA coding standards, debug tools and software testing tools that are available to assist software programmers and engineers seeking to develop reliable and safety critical
systems."
The Reliable Software Developers' Conference will be co-located with the 2014 UK Device Developers' Conference. Both will be a one-day conference to be run in Bristol, Cambridge, Northern England and Scotland on May 20th, May 20rd, June 3rd and June 5th.
Delegates attending either event will have the opportunity to sit in on technical presentations and ½ day technical workshops and a attend a vendor exhibition of tools and technology for the development of real-time and embedded systems. www.device-developer-conference.co.uk
"Advanced Debug Tools, Code Test, Version Control, Verification Tools and Software Standards have been a growing feature of recent conferences, so it made sense to create a dedicated event," said Richard. "There will be a lot expertise available to delegates, and the chance to meet a broad range of vendors of test technologies and tools, all under one roof."
Developed in collaboration with MISRA (Coding Standards), the Reliable Software Developers' Conference will feature a number of presentations in the morning, followed by a half-day technical workshop in the afternoon. The presentations will be free and open to delegates of both Conferences, but the half-day workshops will be subject to a charge of £75. Delegates will learn about developments in coding standards, test and verification tools and best practices and it will also be an opportunity to meet with many industry experts.
Refer to:http://embedded-computing.com/news/the-uk-may-2014/

2013年12月23日 星期一

Acrosser wish you Happy Holidays and a very prospective 2014 coming soon!

As we near the end of 2013, Acrosser would like to send you our warmest New Year’s wishes! We wish you and your family health, comfort, and prosperity this holiday season.

We also thank you for keeping up with our latest products, sending us inquiries, and choosing our products for your integrated solution! In 2014, we hope you will continue to choose Acrosser. We look forward to assisting you and your company in becoming the leader in your vertical market, and building a win-win relationship together.

And don’t forget about our star product, AES-HM76Z1FL, and its upcoming Product Testing Event in January! Remember to mark your calendar, since Acrosser is lending the product for free only to selected participants! Please stay tuned for more event information in early January!

With your continuous dedication and our commitment to quality, Acrosser is always motivated to make your embedded idea a reality!

2013年12月16日 星期一

Comprehensive customization for network appliances: meet our rackmount and micro box!

acrosser Technology, a world-leading network communication designer and manufacturer, introduces two network appliances that deliver great performance and protection while simplifying your network. Each product has its own target market and appeals to a unique audience.

Acrosser
’s ANR-IB75N1/A/B serves as an integrated Unified Threat Management (UTM) device that covers all of your networking security needs. Featuring a 3rd generation Intel Core i processor, increased processing throughput is easily made. For integration with information security systems, the device also features functions such as anti-virus, anti-spam, fire wall, intrusion detection, VPN and web filtering, in order to provide complete solutions to meet the demands of various applications.

Key features of the ANR-IB75N1/A/B include:
‧Support for LGA1155 Intel® Core ™ i7/i5/i3 processor / Pentium CPU
‧Intel B75 Chipset
‧2 x DDRIII DIMM, up to 16GB memory.
‧2 x Intel 82576EB Fiber ports
‧8 x Intel 82574L 10/100/1000Mbps ports
‧Two pairs LAN ports support bypass feature (LAN 1/2 + LAN 3/4)
‧LAN bypass can be controlled by BIOS and Jumper
‧CF socket, 2 x 2.5” HDD, 1 x SATA III, 1 x SATA II
‧Console, VGA (pinhead), 2 x USB 3.0 (2 x external)
‧Support boot from LAN, console redirection
‧Equipped with 80 Plus Bronze PSU to decrease CO2 dissipation and protect our environment
‧LCM module to provide user-friendly interface
‧Standard 1U rackmount size

As for our micro box, the AND-D525N2 provides more possibilities for different applications due to its small form factor (234mm*165mm*44mm). Aside from its space-saving design, the other 3 major features of the AND-D525N2 are its high performance, low power consumption and competitive price. Please send us your inquiry via our website (http://www.acrosser.com/inquiry.html), or simply contact your nearest local sales location for further information.
Key features of the AND-D525N2 include:
‧Intel Atom D525 1.86GHz
‧Intel ICH8M Chipset
‧x DDR3 SO-DIMM up to 4GB
‧1 x 2.5 inch HDD Bay, 1 x CF socket
‧4 x GbE LAN, Realtek 8111E
‧2 x USB2.0
‧2 x SATA II
‧1 x Console
‧1 x MiniPCIe socket

Besides In addition to these two models, Acrosser also provides a wide selection of network security hardware. With more than 26 years of rich industry experience, Acrosser has the ODM/OEM ability to carry out customized solutions, shortening customers’ time-to-market and creating numerous profits.

For all networking appliances product, please visit:
http://www.acrosser.com/Products/Networking-Appliance.html

Product Information – ANR-IB75N1/A/B:
http://www.acrosser.com/Products/Networking-Appliance/Rackmount/ANR-IB75N1/A/B/Networking-Appliance-ANR-IB75N1/A/B.html

Product Information – AND-D525N2:
http://www.acrosser.com/Products/Networking-Appliance/MicroBox/AND-D525N2/ATOM-D525-AND-D525N2.html

Contact us:
http://www.acrosser.com/inquiry.html

2013年12月10日 星期二

INDUSTRIAL ETHERNET GROWING


December 5, 2013 - The Chinese market for industrial Ethernet & Fieldbus Technologies grew by 18 million nodes in 2012. More than 3 million nodes used Ethernet and the remainder used Fieldbus technology.

Although Fieldbus has a large base of new connected nodes in China, the usage of Fieldbus is not as common as in developed countries such as Germany or the United States. This is mainly because Chinese customers are encountering networking technology much later than those developing countries.

However, the growing speed of Ethernet is quite considerable in China and we think it is a great opportunity for Chinese customers to upgrade their automation system under current market condition. Customers will just jump from old Fieldbus Technologies direct to Ethernet now and actually many of them are doing right now.  The Chinese market is currently engaged in extensive upgrading and new infrastructure construction, and that will require a great deal of Ethernet applications.


refer to:http://www.automation.com/portals/industrial-networks-field-buses/industrial-ethernet-growing-in-china

2013年12月1日 星期日

High Computing Performance for All Applications- F.I.T. Technology

The demand for computing performance in the IPC market continues to become stronger as the IT field advances. Acrosser’s new AES-HM76Z1FL has been designed to meet these demands.
The F.I.T. Technology used to build this new product reflects its 3 major features: fanless design, Intel core i processor and ultra thin frame. The fanless design not only reduces the risk of exposure to air dust, but also prevents fan-malfunction. With a height of less than 0.8 inches, AES-HM76Z1FL’s slim design makes itself FIT into every application.
As its structure and output interface show, AES-HM76Z1FL provides a wide range of choices, from HDMI, VGA, USB, and audio to GPIO output interfaces that suit almost all industries. For wireless communication needs, the AES-HM76Z1FL has a mini-PCle expansion slot which provides support on both 3.5G and WiFi.
Another fascinating feature of the AES-HM76Z1FL is its ease of installation for expansions. By disassembling the bottom cover, expansions such as CF cards, memory upgrades and mini-PCIe can be easily complete without moving the heat sink. Moreover, Acrosser adopts 4 types of CPU (Intel Core i7/i3, Intel Celeron 1047UE/927UE) for AES-HM76Z1FL, allowing it to satisfy the scalable market demands of different applications.
In conclusion, the AES-HM76Z1FL is truly a well-rounded product designed for diverse applications. To promote our star product AES-HM76Z1FL, Acrosser will launch a product testing campaign starting in January, 2014. Acrosser will provide selected applications with the new AES-HM76Z1FL for one month, and it’s free! For more detailed information, please stay tuned for our press release, or leave us an inquiry on our website at www.acrosser.com!

Product Information:
http://www.acrosser.com/Products/Embedded-Computer/Fanless-Embedded-Systems/AES-HM76Z1FL/Intel-Core-i3/i7-AES-HM76Z1FL.html

2013年11月24日 星期日

Service Dynamics Products & Services

Over the last few years a number of automation vendors have announced various services including outsourced maintenance, system integration, manufacturing and business process consulting, and remote operations. I wonder if an automation vendor can continue to be effective as both a product company and services provider.

To clarify the difference, let’s start by defining what I mean by services and products. By providing services, automation vendors engage with customers to perform labor and knowledge intensive tasks that may include system design, engineering services, system integration, preventative maintenance, remote operations, and other services. By providing products, automation vendors sell something to the customers, system integrators and engineering firms that they will apply to accomplish automation tasks in manufacturing and process environments.

Service Dynamics
The primary objective of a service company should be to focus on the development a system solution that is uniquely suited to the idiosyncrasies of the client’s business without being tethered by particular product solution offerings. A big part of this is the ability to deploy technologies from appropriate sources using integration and engineering skills to achieve a superior result for the client. Service businesses need to have effective and refined project, personnel, and quality management systems. The growth and effectiveness of these businesses is directly related to adding and managing smart people and this is a unique business proficiency mastered by successful service organizations. Pure service businesses have an advantage of successfully maintaining alliances with a range of product vendors that cannot be logically achieved by product vendors who provide services. This separation positions a pure service business to use best of breed and get the most out of vendors. For comparison, consider you are a smartphone user and the only place to get apps was your phone hardware vendor.

refer to:http://www.automation.com/portals/factory-discrete-automation/can-automation-vendors-serve-two-masters-products-services

2013年11月14日 星期四

Acrosser unveils its ultra slim fanless embedded system with 3rd generation Intel core i processor

Acrosser Technology Co. Ltd, a world-leading industrial and embedded computer designer and manufacturer, announces the new AES-HM76Z1FL embedded system. AES-HM76Z1FL, Acrosser’s latest industrial endeavor, is surely a FIT under multiple circumstances. Innovation can be seen in the new ultra slim fanless design, and its Intel core i CPU can surely cater for those seeking for high performance. Therefore, these 3 stunning elements can be condensed as "F.I.T. Technology." (Fanless, Intel core i, ultra Thin)
The heat sink from the fanless design provides AES-HM76Z1FL with great thermal performance, as well as increases the efficiency of usable space. The fanless design provides dustproof protection, and saving the product itself from fan malfunction. AES-HM76Z1FL has thin client dimensions, with a height of only 20 millimeters (272 mm x183 mm x 20 mm). This differs from most embedded appliances, which have a height of more than 50 millimeters.
The AES-HM76Z1FL embedded system uses the latest technology in scalable Intel Celeron and 3rd generation Core i7/i3 processors with a HM76 chipset. It features graphics via VGA and HDMI, DDR3 SO-DIMM support, complete I/O such as 4 x COM ports, 3 x USB3.0 ports, 8 x GPI and 8 x GPO, and storage via SATA III and Compact Flash. The AES-HM76Z1FL also supports communication by 2 x RJ-45 gigabit Ethernet ports, 1 x SIM slot, and 1 x MinPCIe expansion socket for a 3.5G or WiFi module.
Different from most industrial products that focus on application in one specific industry, the AES-HM76Z1FL provides solutions for various applications through the complete I/O interfaces. Applications of the AES-HM76Z1FL include: embedded system solutions, control systems, digital signage, POS, Kiosk, ATM, banking, home automation, and so on. It can support industrial automation and commercial bases under multiple circumstances.
Key features:
‧Fanless and ultra slim design
‧Support Intel Ivy Bridge CPU with HM76 chipset
‧2 x DDR3 SO-DIMM, up to 16GB
‧Support SATA III and CF storage
‧HDMI/VGA/USB/Audio/GPIO output interface
‧Serial ports by RS-232 and RS-422/485
‧2 x GbE, 1 x SIM, and 1 x MiniPCIe(for3G/WiFi)


Contact us:

2013年11月4日 星期一

An in-the-loop testing strategy is often used as itemized below

1. Simulation test cases are derived and run on the model using Model-In-the-Loop (MIL) testing.
2. Source code is verified by compiling and executing it on a host computer using Software-In-the-Loop (SIL) testing.
3. Executable object code is verified by cross-compiling and executing it on the embedded processor or an instruction set simulator using Processor-In-the-Loop (PIL) testing.
4. Hardware implementation is verified by synthesizing HDL and executing it on an FPGA using FPGA-In-the-Loop (FIL) testing.
5. The embedded system is verified and validated using the original plant model using Hardware-In-the-Loop (HIL) testing.
A requirements-based test approach with test reuse for models and code is explicitly described in ARP4754A, DO-178C, and DO-331, the model-based design supplement to DO-178C.

refer to:
http://mil-embedded.com/articles/transitioning-do-178c-arp4754a-uav-using-model-based-design/

2013年10月28日 星期一

Asia almost half of automation solutions

A recent report by IHS has shown that in 2012, capital expenditure on industrial automation equipment in Asia reached a total of $76.6bn, representing 46% of global investments in the sector.
Despite this established and rising trend, selling industrial automation equipment in Asia remains a clear business opportunity and one where many European providers are lagging behind.

Despite the first half of 2012 seeing an Asian market slowdown, with only a 3.7% growth in overall revenue from industrial automation solutions equipment, the second half of the year showed definite improvement. The positive trend has continued in 2013, with the industrial automation sector set to grow by 6.2%. In such a dynamic market, getting new business can be both a business and technical challenge.

One of the key areas of opportunity is the power industry, where the booming consumer and industrial power markets in developing economies such as China and India have created rocketing demand. In China the per capita energy use is still a long way behind most of Western Europe, meaning the potential for growth is still huge. Without question, Asia represents a perfect storm of opportunities for European automation suppliers.
In order to help businesses better understand how to take advantage of the current climate and increase their industrial automation sales in Asia, particularly China, the CC-Link Partner Association (CLPA) is hosting a seminar entitled ‘Gateway to China’. The event will take place on 24th September at the Mitsubishi Electric Europe Tokyo Conference Suite in Hatfield.

refer to:http://www.connectingindustry.com/automation/asia-claims-almost-half-of-automation-sales.aspx

2013年10月22日 星期二

Corporate candidates in IPC technology



Expected data point is that the average salary of an employee gradually increases with the number of people reporting to him or her. With no direct reports, the average salary is $102,170. The average salary increases to more than $200,000 when the number of reports exceeds 500 people.

If you look around your office or attend any industry events, you will notice the sheer lack of females in the automation profession. This year the percentage of female respondents crept up slightly from 5.1% last year to 6.3%. Along with that gender gap comes a salary gap of about $11,283. The average salary for a male is $107,487, while the average salary for a female is $96,204.

If you look around your office or attend any embedded computer events, you will notice the sheer lack of females in the automation profession. This year the percentage of female respondents crept up slightly from 5.1% last year to 6.3%. Along with that gender gap comes a salary gap of about $11,283. The average salary for a male is $107,487, while the average salary for a female is $96,204.

There is a message here for employers. If you are paying less than the industry average, you could very likely lose your engineers. Based on data from industrial auto machines, a recruiting and contract staffing company based in Minnesota, there is a high demand for automation professionals, and high-quality candidates are hard to find. When companies do find good candidates, the candidates typically have multiple offers on the table. If your company employs high-quality professionals, pay them well, or you may lose them.

refer to: http://www.automation.com/factors-that-affect-your-salary-what-you-need-to-know

2013年10月1日 星期二

BIST for building ISO on-chip safety


Logic & Memory BIST
Functional safety standards for automotive chips like ASIL (Automotive Safety Integrity Level) recommend BIST (Built-In Self-Test) to be part of a chip. Before transitioning to functional mode, it goes through logic and memory-BIST to assure that the chip has not encountered any manufacturing or aging faults. Chips can implement BIST for critical modules like hardware monitors to detect any dormant faults. Chips can even implement a controller to control and manage the BIST operations.


Redundant critical on-chip modules like processor, ISO, DMA controller, internal clock generator, and communications peripherals can improve reliability should a primary hardware module become non-functional while the vehicle is running. Such a system can have in-built error detection mechanisms and on-the-fly switching to redundant hardware to mitigate threats to passenger safety.
But this kind of redundant hardware architecture comes with the penalty of increased area and higher power management in silicon. Area penalties can be minimized by intelligent selection of which functions need to be duplicated in silicon. Power can be minimized by adopting power and clock gating in the redundant modules. Some  in-vehicle computers can be implemented in lock-step of each other, where primary and redundant modules process the same input. Mismatch in the output of the lock-step modules indicates a defect in either of the modules. The system can switch itself off or take appropriate safety measures to avoid any real-time failure. Redundant hardware should be placed quite far in silicon from the primary embedded systems to avoid tampering of both modules together.




refer to: http://www.edn.com/design/automotive/4421704/Safety---security-architecture-for-automotive-ICs

2013年9月17日 星期二

Leveraging IT Technology for industrial applications

With that said, the solutions is going to be moving with an industry that has a definite consumer bias, with product development and release embedded systems of six months or less. In an industry where the average life expectancy of an automotive production line is eight years, it is impossible to expect the networks in an industrial setting to keep up with modern IT standards. Therefore, we turn our attention to the technologies that have existed the longest, with the most open standards and the very best support. These are the protocols we wish to use and keep, and this article highlights and explains some of these technologies.
This article does not focus on the technical implementations of each piece of technology. Rather, it is assumed the reader will be using packaged solutions such as a function block for a PLC. These packages typically require only that the user specifies the relevant server to connect to, the data to be gathered and an activation bit. The particulars of each protocol and concept are, ideally, transparent to the user, and therefore it is not pressing that the user understands what is contained in each packet passed between the server and the client. As each protocol described in this article is openly documented and supported, a simple search on the Internet for the technical details will likely yield the relevant implementation details.

refer to: http://www.automation.com/leveraging-it-technology-for-industrial-controls-applications

2013年9月10日 星期二

Combination for visual displays and your embedded system


Visual displays

To keep up with the increasing sophistication of factory equipment, Human Machine Interfaces (HMIs) need to deliver sophisticated 2D and 3D graphics, video, and other embedded systems types that clearly communicate a machine’s status and intended operation. Advanced visuals are also important in central control rooms, where management needs to understand increasingly complex of embedded systems and distributed Internet of Things-enabled systems at a glance.

Performance is critical in solutions Things-enabled factories, as it enables greater analysis of product quality, equipment performance, and other factors. Overall performance is up 15 percent in the new processors, while signal and image fanless embedded systems get an additional 2x boost with Intel Advanced Vector Extensions

refer to:


2013年7月8日 星期一

Female leaders in the embedded industry


In the next 5 to 10 years, which technologies will present the most viable development opportunities for your organization and for the embedded computer industry?

MITCHELL: The ever-expanding Internet of Things will continue to drive embedded development – specifically distributed tech. Back in the days of mainframe terminal controllers, we all shared resources to keep availability up and costs down. When PCs entered the market, everyone got their own resources, and it was all about owning bigger hard drives and more RAM. Now, we are moving toward everyone having thin clients and sharing resources again. It’s all about mobility and always-on availability. This distributed evolution will drive opportunity for Altera and for embedded, in both infrastructure and end-user embedded computer equipment.

Another factor is consumer trends. As an example: 3D printing is really hot right now. It brings robotics and automation to the people – makes it affordable and available just like PCs did for computing in the early ’80s. Robotic technology helps with science, like medicine and mechanics, and also with art, productivity, and efficiency. As engineers, we should keep our eyes open for anything that melds the analog and digital, the human-machine interface that bridges organic and inorganic.


2013年7月1日 星期一

How to manage embedded system's peripherals?

The basic functions of an operating system are to manage the system’s peripherals and schedule software tasks to ensure that each program gets some processor time. A file system is also part of a standard OS to store software modules and boot instructions. Another big benefit of an embedded computer is to provide networking software and drivers for common hardware peripherals, eliminating constant reinvention. However, an embedded OS is quite different from its desktop counterpart. Desktop systems assume a keyboard, a mouse, a display, a hard disk, and plenty of memory. However, there is no such standardization in embedded products. One embedded system might have no hard disk and limited memory while another has no user I/O at all. An embedded OS must also be modular, allowing components to be added or removed to adjust the memory footprint such as is possible with the Neutrino real-time OS from QNX (see Figure 1). Before settling on an OS, designers should understand scheduling algorithms, memory requirements, latencies, tool support, and pricing models.

2013年6月19日 星期三

Remote control for the embedded system

Industrial computer, gaming platform, Embedded pc



Identity and access management at the application are finally getting the attention that they deserve, but they are not new embedded computer concepts. With a growing importance on stronger authentication, cloud providers need to increase the number of authentication factors they consider. The typical two-factor authentication approach – typically a Common Access Card (CAC) in embedded computer – is not enough; they need to add additional factors based on the risk associated with certain data. We are focusing on ‘fine-grained entitlements’ in applications and how to secure everything with a lot of fidelity at the application level and data level. This also includes new approaches and technologies to securing data at rest.”


2013年5月1日 星期三

10 GbE enables real-time remote desktops..

Virtualization trends in commercial computing offer benefits for cost, reliability, and security, but pose a challenge for military operators who need to visualize lossless imagery in real time. 10 GbE technology enables a standard zero client solution for viewing pixel-perfect C4ISR sensor and graphics information with near zero interactive latency.

Industrial computer, gaming platform, Embedded pc

For C4ISR systems, ready access to and sharing of visual information at any operator position can increase situational awareness and mission effectiveness. Operators utilize multiple information sources including computers and camera feeds, as well as high-fidelity radar and sonar imagery. Deterministic real-time interaction with remote computers and sensors is required to shorten decision loops and enable rapid actions.A zero client represents the smallest hardware footprint available for manned positions in a distributed computing environment. Zero clients provide user access to remote computers through a networked remote desktop connection or virtual desktop infrastructure. Utilizing a 10 GbE media network for interconnecting multiple computers, sensors, and clients provides the real-time performance and image quality required for critical visualization operations. The cost of deploying a 10 GbE infrastructure is falling rapidly and 10G/40G has become the baseline for data center server interconnect. Additionally, deploying common multifunction crew-station equipment at all operator positions brings system-level cost and logistics benefits. The following discussion examines the evolution to thinner clients and the path to a real-time service-oriented architecture, in addition to looking at zero client benefits and applications.


Evolution to thinner clients
For military C4ISR, capabilities provided by legacy stovepipe implementations are being consolidated into networked multifunction systems of systems. To accomplish this, open standards and rapidly advancing technologies for service-oriented architectures are being leveraged (Figure 1). For crew-station equipment, this drives an evolution from dedicated high-power workstations toward thinner client equipment at user locations. Computing equipment is being consolidated away from the operators into one or more data centers. This leaves the crew station with a remote connection to system resources, but does not ease the requirement for high-performance access to visual information. 10 GbE provides the client/server connection performance necessary for real-time remote communication.


Industrial computer, gaming platform, Embedded pc
Figure 1: Client/server evolution: Increasing communications bandwidth enables more service-oriented computing and “thinner” clients.




Workstations at operator positions normally run software applications locally and provide dedicated resources for data and graphics processing. Server-based data processing and networked sensor distribution systems have moved much of the application processing away from the operator. This can simplify the job of system administration and maintenance and enables multiple users to access the same capabilities. However, much of the processing for presenting images to operators can be unique to the individual needs for varying roles at each position.
Thin clients can be utilized to provide dedicated graphics and video processing horsepower for user-specific visualization operations such as windowing, rendering, and mixing multiple data and sensor sources. Dedicated local graphics processing power can be important for critical real-time operations or for interfacing to servers without high-performance graphics capabilities. This makes a thin “networked visualization client” a flexible option for multifunction crew stations that must interface with both legacy and newer service-oriented systems.
For commercial computing systems, a major push is underway to move high-performance graphics capability into the data center servers. This can be implemented via dedicated workstations for each crew station, virtualized compute engines with dedicated graphics for each crew station, or completely virtualized environments with networked image distribution. Virtualization provides a means to share CPU and GPU compute cycles between multiple users, gaining efficiency from higher utilization of system hardware resources. However, for mission-critical C4ISR systems, a deterministic Quality-of-Service level for performance, reliability, and security must be maintained.
For systems with both computing and graphics processing located away from the operator, zero clients provide network-attached displays with audio and user input devices (keyboard, mouse, and touch screen). Minimizing size, weight, and power at the operator position brings many benefits, but performance depends on the remote visualization processing capabilities and the communication channel. To match workstation performance, a consistent human-computer interaction latency of less than 50 ms must be provided.
Path to a real-time service-oriented architecture
System architects need a graceful technology insertion path that leverages the benefits of thinner clients (Figure 2). One approach for centralizing computing equipment while maintaining performance is to simply move the workstations to the data center and extend the interfaces to the display and input devices. This maintains the dedicated for critical operations. Video and device interface extension can be accomplished via extenders or switch matrices to provide connections between operators and computers.


Industrial computer, gaming platform, Embedded pc
Figure 2: Crew-station evolution to a service-oriented architecture




A more flexible approach is to utilize a standard network to support highly configurable access to all workstation resources from any operator position. With this approach, any user can connect to any image source and user screens can be shared with collaborative remote displays or other users. This also enables growth to a service-oriented “cloud” architecture that follows the trend for general-purpose IT and data processing systems. However, commercial IT products do not always meet the performance, reliability, security, or logistics requirements for mission-critical C4ISR systems.
To leverage this computing trend for real-time applications, a standard 10 GbE media network can be utilized to connect multiple zero clients to multiple remote graphics and sensor sources. Lossless distribution is supported for high-quality text, dynamic 2D/3D graphics, HD video, radar, and sonar imagery. Compositing multiple sources onto a single screen can be performed at the zero client or by networked video processing services. Near-zero latency interaction and video distribution are now possible and support deterministic performance and real-time dynamic visualization at any operator position.
One full-resolution (1,920 x 1,200) loss-less channel at 60 Hz with 24-bit color requires 3.3 Gbps of bandwidth. Therefore, one 10 GbE connection can support a dual-head crew station at full frame rate with audio and USB support. However, many visual applications require no more than a 30 Hz update rate (including 1,080p/30 HD full motion video), which reduces the bandwidth to 1.7 Gbps per channel. This enables triple-head crew stations with audio and USB support over a single 10 GbE connection. Dual Ethernet ports at the zero client can also be provided to support more video channels, higher frame rates, and/or redundant connections.
Zero client benefits
Compared to workstations, zero clients provide several benefits, including lower TCO, reduced SWaP, higher system availability, and more system security and agility.
Reduced total cost of ownership
Zero clients provide the smallest, simplest, and most maintainable equipment available for the operator position. This means lower initial investment costs as well as lower operating and maintenance costs throughout the system life cycle. System modularity and standard interfaces support seamless technology refresh as new computing and display equipment becomes available. 10 GbE has been widely adopted for data centers and standard component costs are declining rapidly. When compared to legacy stovepipe systems, networked systems also greatly reduce the amount of dedicated cabling required.
Reduced size, weight, and power
Only video, audio, and USB encoding/decoding functions are required with a zero client. These are packaged as small dongles or integrated into the display. Small packaging enables new options for lightweight operator consoles with increased ergonomics, as well as reducing noise and the burden on cooling systems for manned areas.
High system availability
System uptime and reliability benefit from consolidating all computing elements into managed data centers. Common equipment at multiple operator positions and redundant network connections support rapid recovery from computer, client, or network equipment failures.
High system security
Security risks are reduced through centralized administration and access authentication at the data center. Additionally, stateless zero client equipment outside the data center and encrypted communications between all components assure system confidentiality and integrity.
System agility
Systems using common crew-station equipment can be reconfigured by software for different mission roles and objectives. Additional clients can be added quickly to extend the system. Also, as computing systems evolve with new virtual desktop infrastructures, today’s investment in zero client equipment is preserved through standard interfaces for video, audio, and user input devices including DVI, PC audio, and USB.
Applications of a zero client
In addition to the benefits of a zero client, the technology’s agility also enables a range of applications using common equipment. For example, remote crew stations can now be smaller, lighter, and more versatile, and operator equipment can be located at remote locations not previously possible. Noisy, heat-generating computing equipment can be moved away from operator positions.
Another application highly suited to zero client utilization is the multifunction crew station. Common crew-station equipment can be used to access multiple computers and sensor sources under secure software control. This supports the capability for dynamic access to multiple systems from a single location. Systems can be rapidly reconfigured for different mission objectives, operating roles, or failure recovery.
Collaborative and remote displays also benefit from zero client usage. Unmanned displays can be attached to the network for sharing real-time visual information for dissemination and collaboration. Large area displays for several viewers can receive multiple feeds with full performance. Additionally, selected sources can be compressed and transmitted through secure routers for wider area distribution.
Using zero client technology for networked multifunction crew stations enables the integration of legacy capabilities into a consolidated operating environment as well as the development of new concepts of operation. One example of this is Barco’s zero client technology, which brings the benefits of state-of-the-art computing architectures into mission-critical C4ISR systems involving advanced visualization.
Mission-critical solution
Leveraging commercial computing trends and standards provides significant cost and capability benefits. However, the level of real-time performance, mission assurance, and information assurance required for mission-critical C4ISR systems must be achieved. Zero client technology enabled by 10 GbE provides the necessary pixel-perfect viewing of graphics and sensor information for these demanding applications.
.....



2013年4月16日 星期二

Difficulties in gaming platforms


Industrial computer, gaming platform, Embedded computer
At Embedded Tech Trends 2013, Marc Couture, director of product gaming platform management at Mercury Systems, made this declaration: "We need to speed up without degradation. The connector is the key to unlocking speed!" Marc commented that current advances in connector and backplane technology will get the industry to 8 Gbaud and beyond, but that much more is needed from the connector suppliers for the next-generation fabric interconnects such as PCIe Gen 3, InfiniBand QDR, or 40 Gigabit Ethernet. Marc's thoughts are reflected throughout the industry as system designers struggle to find that perfect connector.
It is impossible to build a gaming platform without connectors. Chips, boards, and systems simply need to be connected in some gaming platform. But, as Marc mentioned, the connector is the key to speed, and unfortunately they have struggled to keep up with the advancements in processor and chipset bandwidth.

2013年4月9日 星期二

Higher performance for gaming boards

Industrial PC, gaming platform, networking appliance
Longer Life Cycles is a key attribute for the Industrial gaming Grade products since many Industrial, Military, Gaming, Medical and other markets have designs which need a form, fit and function solution for 7 - 15+ years. While the Consumer gaming market demands the latest form factor such as microSD with >32GB storage capacity, many gaming Industrial systems only need from 32MBytes to 16GBytes of storage in a PC Card, CompactFlash or full size SD Card form factor.


2013年4月1日 星期一

Smartphone application on embedded systems

Industrial computer, gaming platform, Embedded pc
A recent example of smartphone tethering can be found in certain subcompact models from U.S. auto manufacturer General Motors. Select Chevrolet models carry the “MyLink” in-dash infotainment system.
From both a cost and ease-of-use perspective, tethering a smartphone makes a lot of sense. But there’s another reason to consider. Some automotive manufacturers are nervous about being too dependent on Google – as Google is the sole provider and owner of the Android mobile platform. Android built into an IVI system is an 8- to 10-year commitment, and a lot can happen in that time regarding license fees or terms of use.

One organization promoting the use of the smartphone as an IVI in-dash system is the Car Connectivity Consortium (CCC). The CCC provides standards and recipe books for tethering a smartphone to the infotainment head unit. The CCC members implement MirrorLink (Figure 2), a technology standard for controlling a nearby smartphone from the in-car infotainment systemscreen or via dashboard buttons and controls. This allows familiar smartphone-hosted applications and functions to be easily accessed. CCC members include more than 80 percent of the world’s automakers, and more than 70 percent of global smartphone manufacturers. The MirrorLink technology is compatible with Mentor Embedded’s GENIVI 3.0 specification Linux base platform solution.

refer to: http://embedded-computing.com/articles/automotive-source-drives-innovation/#at_pco=cfd-1.0


ACROSSER has provided innovative embedded computer solutions and quality products to over thousands customers on helping them reduce the time-to-market to gain the higher competence and to win the market.

2013年3月25日 星期一

Embedded applications...

Embedded PC, in vehicle PC, Industrial PC
In response to growing pressure to boost the performance and trim down the size of embedded applications, standards organizations meet regularly to optimize their portfolios in light of the latest available technology. These updated standards take advantage of new silicon architecture combining multiple processors, graphics elements, and complex I/O to deliver the next generation of preengineered, off-the-shelf modules to support many of the high-performance requirements of embedded product development.
refer: http://embedded-computing.com/articles/evolving-simplify-embedded-development/

Network capacity and performance to cope with the data deluge

IT managers are under increasing pressure to boost network capacity and performance to cope with the data deluge. Networking systems are under a similar form of stress with their performance degrading as new capabilities are added in software. The solution to both needs is next-generation System-on-Chip (SoC) communications processors that combine multiple cores with multiple hardware acceleration engines.

In-Vehicle Computer. single board computer, Industrial PC

 

2013年3月12日 星期二

Approach to communication processors: Multicore Done Right

vGeneric multicore processors have been promoted as the solution to networking communication processing. In reality, they can’t address the scalability, determinism, and ease of programming required for next-generation networking infrastructure. An asymmetric multicore approach that blends multicore processors with networking-optimized accelerator engines and C-programmable libraries meets the challenges of next-generation networks.
Achieving deterministic performance is a key requirement for network operators to ensure reliability across wide variations of traffic profiles and applications. Multicore processors can meet performance challenges when running an application on a single, dual-core, or quad-core processor. However, when scaling to eight cores or beyond, performance scaling usually degrades. There are cases where eight cores deliver no better performance than four, and 16 cores actually run slower than eight.
Networking applications tend to be data-intensive, and generic multicore processors are highly susceptible to the impacts of memory latency on performance. The nonlinearities of memory latency (Figure 1) with regard to memory load combined with the nonlinearities of processor performance relative to memory latency can lead to unpredictable and unreliable performance. The innovative approach taken by LSI to solving this problem is asymmetrical multicore processors, which combine general-purpose processors with specialized accelerators for particular data-intensive tasks, resulting in an optimal, scalable solution.

Industrial computer, gaming platform, Embedded pc
Asymmetrical multicore processors improve performance predictability by combining general-purpose processors and accelerators to address the nonlinearities of memory latency.

Networking infrastructure applications tend to involve complex processing, intense memory utilization, and real-time, deterministic requirements. Asymmetric architectures address these challenges by seamlessly allocating the work between general-purpose multicore processors and specialized acceleration engines. These accelerators are specifically designed to tolerate memory latencies and perform predictably. This approach also enables the application to be built using fewer general-purpose multicore processors with far fewer lines of code. The asymmetric approach simplifies scaling challenges and delivers more deterministic performance at lower cost and power.
Networking applications demand a flexible approach to OSs. This flexibility is required not only to meet application requirements, but also to support the smooth migration of OEM legacy software and give designers the ability to choose the right OS for a particular application. It is important to simultaneously support multiple OSs on different cores without introducing overhead. At LSI, our hardware and software has been architected from the ground up with all this in mind, providing flexible support for the range of OSs used in networking applications.
Software tools such as compilers, simulators, and debuggers are required to support these processors. Simulators must be fast, support real-world throughput and traffic types, and perform accurately for software debugging. Ideally, tools are integrated to enable end-to-end software development in a single environment.
LSI has developed an integrated software development environment through six generations of communications processors. These tools have been hardened through many years of real-world deployment. LSI provides an Advanced Development Kit (ADK) consisting of highly scalable, customer-extensible modules that can be combined to enable quick and easy application development. These function-specific modules seamlessly enable rapid development of applications leveraging the asymmetric multicore architecture for wireless, wireline, and enterprise networking.
The ever-increasing performance demands of next-generation networks and applications, coupled with user expectations of reliability and quality of service, require purpose-built asymmetric multicore architectures to achieve wire-speed, deterministic performance at the lowest power and cost. LSI solutions for networking infrastructure applications are optimized with the right combination of multicore processors and accelerators to deliver scalable, reliable, and deterministic performance. We call this “Multicore Done Right.”
refer: http://embedded-computing.com/articles/an-multicore-done-right244/

2013年3月4日 星期一

How about Communication strategies in embedded technology

Industrial computer, gaming platform,  Embedded pc
Although embedded devices destined for industrial applications have a wide range of design requirements due to the diverse environments in which they are deployed, almost all systems need some form of wired or wireless communications capabilities. Stand-alone industrial embedded devices are relatively rare, as users now demand remote access for data collection, management, maintenance, troubleshooting, software updates, and system security. For example, businesses need to monitor and collect real-time operational or throughput statistics from individual devices to evaluate the performance of manufacturing systems and methods.
Complex embedded systems can automatically run maintenance and diagnostic routines to evaluate reductions in performance and remotely schedule hardware updates. Many remote systems also require some type of security or surveillance features to detect and possibly prevent physical or virtual attacks. The challenge for embedded designers is to find the right communications technologythat delivers reliable, high-performance connectivity in an industrial environment with possible noise, extended temperatures, shock/vibration, and interference.
In this issue of Industrial Embedded Systems, we asked contributors to take a look at the principal issues and trends affecting contemporary embedded design for industrial applications and found that connectivity was a major topic in most of the articles and interviews. For example, in the Computing section, Mike Holt of Semitech Semiconductor illustrates techniques to optimize power line communications for Machine-to-Machine (M2M) applications such as automatic meter reading or control and management of streetlights, vending machines, or solar panels. In the same section, Lantronix VP of engineering Daryl Miller offers suggestions for making smart grids smarter by integrating M2M communications features into legacy equipment to enable remote access, control, and troubleshooting capabilities. Andreas Johannsen of Vincotech describes another important design requirement for industrial equipment, especially systems that operate 24 hours a day: power efficiency. Andreas shows how electronic commutated motor drives contained in an integrated power module can be up to 90 percent more efficient than conventional motor drives in industrial applications.
In the Networking/Sensing section, connectivity is a central theme in discussions on applications ranging from building automation to smart parking technology. In a Q&A session, HomePlug Powerline Alliance President Rob Ranck explains the current state of broadband networking over existing AC wiring within the home and outlines new standards that support smart gridapplications, electric vehicle charging stations, and HD streaming for movies or gaming. In a technical article targeting Building Automation Systems (BAS), Louis-Nicolas Hamer, VP at SCL Elements, describes the industry’s slow progress due to poor interoperability among multiple automation protocols and highlights a new all-in-one embedded gateway controller that can solve this BAS divergence. Citing unprecedented grown in the M2M industry, Mike Ueland, VP and general manager at Telit Wireless Solutions North America, shows how companies are deploying remote monitoring to increase efficiency and cut costs in managing industrial assets and systems. And finally, in a completely different connectivity application, Alicia Asín of Libelium offers a unique solution for automobile parking management that could potentially eliminate billions of hours of lost productivity along with billions of gallons of wasted fuel due to motorists cruising around searching for parking spaces.
This issue also includes our annual Resource Guide with a large number of embedded products divided into dozens of categories to simplify your next industrial design project. You’ll find a wide selection of off-the-shelf industrial systems, small form factor modules, power sources, panel computers, enclosures, and specialized embedded components to solve your unique requirements. You’ll also find embedded support software including operating systems plus data acquisition andmotion control systems. Our aim is to provide a reference source of available products that match your future design projects. If you have suggestions or products for the next Resource Guide, please let us know.
The articles and interviews in this issue include an extensive look at the embedded industry from the industrial viewpoint and should serve as a valuable technical reference for your next design project. In addition to the topic of connectivity, you can gain a wide-ranging perspective on multiple industrial design issues from diverse vertical market areas. Our plan is to continually search the embedded community to deliver guidelines and techniques to keep you on the leading edge and ahead of your competition. Please give us your ideas on print technical articles and online updates that we can provide to support your design efforts.
REFER:
http://industrial-embedded.com/articles/communication-reshape-embedded-technology/

2013年2月25日 星期一

Analog IP cores for embedded computing needs

Industrial PC, gaming platform, networking appliance
 

Understanding and selecting analog IP can be risky, but engineers today have more choices and more control than they think. Knowing how to manage the IP selection process can help engineers effectively meet objectives and reduce risk.

As digital design has proliferated the electronics world, making designs faster, easier to test, and more robust, the analog portion of embedded designs is becoming a bottleneck. To meet requirements and timetables in the analog portion, engineers generally have three weapons at their disposal: utilize peripheral analog IC, build the functionality internally (make), or purchase the IP block from an external vendor (buy). Each option has its own merits and drawbacks, but none can launch a competitive advantage better or cause more frustrating confusion than analog IP.
Traditionally, these options only apply to ASIC builds, as FPGAs are not compatible with analog IP. However, this is changing quickly. Some IP companies now provide all Register Transfer Language (RTL)-based Analog-to-Digital Converter (ADC), Digital-to-Analog Converter (DAC), DC-DC converter controller, and clocking functions with robust performance.
To meet design objectives, engineers must understand the IP vendor’s strategy and incentives and match their offerings to what is required.

Refer:
http://embedded-computing.com/articles/understanding-analog-cores-embedded-computing-needs/